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WO PROBLEMS WITH MIXED BOUNDARY CONDITIONS 

FOR AN INCOMPRESSIBLE ISOTROPIC HYPERELASTIC MATERIAL* 

V.M. ALEKSANDROV and S.R. BRUDNYI 

Within the framework of nonlinear elasticity theory there is oonsidered the equili- 
brium of a layer of incompressible isotropic hyperelastic materialunder planestrain 
under the effect of gravity and forces P applied at infinity. The linearized equa- 
tions generated by this state of stress and strain are investigated. It is shown 

that under for relationships between the material parameters, the layer thickness 
and the force P the equilibrium position can become unstable. Two problems are con- 
sidered: the contact problem for a strip and the problem of a vertical crack of 
finite length emerging on the half-plane boundary. The action of the stampand the 
crack is considered a small perturbation ofthestate of stress and strain caused by 
the action of the intrinsic weight and the force P. 

1. Let r,,~r, be Cartesian coordinates of the undeformed state, and Y,,YS the Cartesian co- 
ordinates of the deformed state. The 2% axis is along the upper boundary of the strip to- 
wards the right, and the rz axis is into the strip. Let the strip be subjected to its own 
weight and forces P(P,,P,) applied at infinity; Pr and Ps are the respective projections on 
the axes 2, and x1. Then this state of stress and strain is described by the following system 

of equations (the equations of equilibrium, state, and the incompressibility condition, re- 
spectively): 

6.. .+d,ly* = 0, 5ij~Frl$ pF;/> f = det(loij) = I: A = 2~ Zlr> (1.1) 

For -%= Othe boundaxy conditions are 

a,, = 0, 42 = 0 (1.2) 

TWO kinds of boundary conditions corresponding to a smooth rigid base (problem A) and to 
rigid adhesion of the strip to the base (problem B) are considered on the lonier boundary of 
the strip (i.e., .Ue=h (problem A) and y,= r,,y,= h (problem B) for cftp= 0. 

Here oil is the Piola tensor, y* is the specific gravity, Fij = Yi,j is the strain grad- 
ient tensor, I= FijFijv W'(I) is the potential of the hyperelastic material, p is the hydrostatic 
pressure, Fji-' is the transpose tensor reciprocal to Fijs &i is the Kronecker delta, and h is 
the thickness of the strip. 

We seek the solution in the form 

Y, = Rzt + cp @n). Yz = f (+2), R = ccnst (1.3) 

We then obtain the following relations from the system (1.1) and (1.2): 

A@ = 0, Ai'T Rp = -_v*q, Rf' = i (1.4) 

From the first equation in (1.4) it follows that cp'==O. For A (I)EsO the condition of el- 
lipticity Of the equilibrium equations is spoiled /l/, and of the Baker-Erickson inequality 
/2/. Because $+=O a solution of the type (i.3) exists only for 
deed assume. 

P,- O,as we henceforth in- 

Let us examine problem A. Taking account of (1.4), we have 

P = R-'(-_~+"a - A,R-I). A,, = A (lo), I, = R2 + R-2 

ihA0 (R - R-$1 = fVy'hV2 + P%) 
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where R is determined from the equation in brackets. 
determine 

The boundary conditions ~_,f problem !! 
RR= I. The fixinq of the infinitely remote point automatically determiiles t!ir 

magnitude of the force P,= --y=h*/2 here. 

2. Performing the standard linearization procedure in conformity with the methodof smali 

perturbations /2/, we obtain the following system of equations in dimensionless variableswrit- 
ten in the coordinates of the deformed state: 

Q = RP (1 + m), T = Rw2, E = R*, G = R-* (1 - m! 

m = L (R= - R+) / Ao. L = 4GWl dlz, I = I,, y = y’a : AU 

The dimensional variables (with the asterisk) are expressed as follows in terms of the 
dimensionless variables: the Piola tensor perturbation is rij* =_~~r~~, the displacement pertur- 
bation vector is q* = ,zu*, the pressure perturbation is P’=A op, the coordinates of the state 
of strain are zi*= nq,and a is a certain parameter with the dimensionality of a length. Sub- 

stituting (2.2) into (2.1), we obtain 

Applying the relationship obtained in /l/, the ellipticity condition for the system (2.3) 

can be represented in the form G+Q>-2. As is known /1,2/, buckling of the equilibrium 

position, the possibility of the appearance of solutions with weak discontinuities, isrelated 

to the loss of ellipticity. 

3. We consider the action of a smooth stamp on the upper boundary of a heavy layer of 

incompressible hyperelastic material as a small perturbation of the state of stressand strain 

caused by the action of gravity and the forces P applied at infinity. We identify the para- 

meter a from Sect.2 as the stamp half-width. Applying the Fourier transform in the variable 

=2 to the system (2.3) and the corresponding boundary conditions, we obtain the following 

system 
- ayrr+ Tli," -KG= 0, -r&r +liz' = 0 

-u?Eu; + cIT,*+ 0, =O, o_~+yUz 

ii,'- ICC, == (1. (G + T) &'+ p = 8, ** = 0 

a,' - 162 = 17~ = 0. 1% = h (problem A) 
u; = !i2 = cj. rz = h (problem B) 

(3.1) 

The prime denotes differentiation with respect to z2 and the bar denotes the transform 

of the corresponding function, Q (x1) is the contact pressure, and h is the dimensionlessthick- 

ness of the strip. Let u(zJ be the shape of the stamp. Solving the appropriate boundaryvalue 

problems, we obtain integral equations for the contact pressure in the form 

1 m 

X”(Z) = 5 q (t) K (y) dt, K (t) = o L(v) cos utdu s 
-1 

The form of L(U) in problem A is determined by the roots ql,% of the equation 

T%j2 - (G + Q)n + E = 0, G + Q> -2 

If they are distinct (ri,#@ , then 

L (u) = (o* - v*) ((co2 - .~.~)l.~ + Z’u Cd ( v. o)cth VU - d (co. v) cth OU))-~ 

o = 1/Ti;, v = 1/;1;, d (a. b) = a [I + bz)*, y,, = y;L 

(3.2) 

(3.3) 

(3.4) 

and if they are equal, then th= q2=v= v/p and 

L (u) = (ch 2~ - 1) i (Auah zu + BU* + ya (ch 2~ - i)) (3.5) 

A = (3v$- zv-' - V-3)/ 2, B = Y + 2V-'+ v-3 

If d(o,v)>d(v,o) in (3.4), and d<Oin (3.5), then L(U) has a poles on the real axis. 

This indicates instability of the prestress state. 
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A =O equation (3.2) is a Fredholm integral equation of the secondkind 

as a quasi-Winkler foundation, and as a pure Winkler foundation in the 

problem B 

L (IL) = u-1 (sh zu - 2~) / (2u*+ ch 2~ + 1 + y0 (sh 2ui2u - i)) (3.6) 

It can be shown that for ~(u)representable by (3.4) for d(~,~)>~d(%V) (3.5) for A>09 

and (3.6), the following asymptotic behavior is valid as IL--~CO: 

L (U) - C0 (1 + C~ll.--l + CpW-* $ C$Ue3 + 0 (U-')); Ci = COIlSt (3.7) 

and the asymptotic behavior of L(u) as u-+0 in problems A and B has the foml, respectively 

L(u)^.c+o(u~); c=const (3.8) 

L (u) - cl&* (i + 0 (IL*)); C = const (3.9) 

The representations (3.7)- (3.9) afford the possibility of using asymptotic methods for 

large and small lambda developed in /3,4/ to solve equations (3.2). Numerical computations 

performed in problem A for a material with a potential of the foml W= ~/26((i f b'n(I -2)n-i), 

cI,b>O /5/, showed that the value h, at which these asymptotic methods join depends on the 

tension parameter R. For instance, for b= 10,n= 2, for R = O.S,h,= 2.8 while for R = 1.6,X,= 

1.3. 

4. Let a narrow vertical shaft of length (I now be carved in a heavy half-plane of an 

incompressible hyperelastic isotropic material. The shaft is reinforced by rigid horizontal 

braces that cancel the stress from the intrinsic weight acting on the vertical sides of the 

shaft. Such a narrow shaft will later be considered as a crack. The half-plane is considered 

the limit case of a layer adhering rigidly to the foundation. Without limiting the generality 

of the subsequent considerations, we consider the load applied only to the crack edges, where 

there are no tangential forces. The action of the load on the crack edges will be considered 

as a small perturbation of the state of stress and strain caused by the action of gravity. We 

identify the parameter o from Sect.2 with the crack length. Then the system of equations and 

boundary conditions describing this state of stress and strain has the form 

ui,n + %,a2 i 0,* = 0, U~,I i- Uz.2 = 0; 0 = p + y (Lt. i = 1, 2 (4.1) 
2%,2 + 0 - yu* = 0; 0 g II < M, z* = 0 (4.2) 
Ul,Z + &,I = 0; 0 < .%I < 00, x2 = 0 

%,I + (1 + I%)%,* = 0. II = 0, O,<%<W 
6-2 

(4.3) 
%,2 - (:'%Ul)Q = 2f (ZJ, *I = 0, 0 < s2 < 1 

01 = 0; 51 = 0, i<%z<m 

We obtain from (4.1) that ZL~ and uz are biharmonic functions, and 13 is a hamlonic func- 
tion. We seek the bihamlonic function ut in a special form (integration over CC and B is 

everywhere performed later between 0 and CO). 

u. (q, Is) = \ B (a)a.qFar’ cos as,da + \ K (a) (1 - a.~,)~-~‘sin e.+da + 5 (C (B) + fl.rpD (t?))e+" sin pz,dfi (4.4) 

We then have 

~11 (~1, zT2) = - \ B (a) (1 + a~&-~'sin az,da - 

\ K (a)ar,eg+’ cm c&da + 1 (C (b) - D (B) A- I&D (B))e-Bx* cos fh,dp 

0 = 2 (5 B (a)ae-’ sin az,da + 

\ A- (a)ae-=’ cos ort,da - \ D (fl)&+-8”’ cm ~qdf3) 

The boundary conditions for +=O and x,= 0 become, respectively: 

(4.5) 

(4.6) 

Using the formulas for the Fourier sine and cosine transfomis /6/ in (4.5) and (4.6), we 
obtain 
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ali (a) = x -& (cd (a)) 

We seek the solution of the system (4.8) in the form 

!z$. 7’ 
I ) 

(4.6) 

(4.9) 

where J,(Z) is the Bessel function of first order. Therefore, the second equation of (4.8) 
can be satisfied automatically, and by differentiating under the integral sign, we have from 
the first equation 

i 
(4.10) 

Reducing (4,lO) to a F'redholm equation of the second kind by a known method /7/, we obtain 

(4.11) 

7-z [x Ia (s) W-I- 2) -SF (8) Jr21 +(* - -&) (SF (s) - 

Q, (5) -l)-@(s)) T 11 
z = @, s = pz, 11= @6; F (2) = I, (2) - L, (z), CD (2) = I, (2) -' L, (2) - 2/n 

Q = ( I:: ;r;;s- jllp (u)f”. 
&>I 2 w b))‘, b>t 

a Q 1 ’ 
T _ 

i a (EF (z))‘- u (UP (xi))‘, 6 < 1 

Here Ii and Li are, respectively, the modified Bessel and Struve functions. It can be 

shown that the nom] of the operator defined by (4.11) is bounded in the space c (0. 1) for any 

x where the value x,<1 exists such that the operator (4.11) is a compression operator for 

X<%. 
The coefficient of stress concentration at the angle of the crack is determined by the 

value of the function P(c) at the point CC= i. Numerical computations performed for x<i 

show that the magnitude of the stress intensity coefficient diminishes as 6 grows. 

The authors are grateful to N.Kh. Arutiunian for valuable remarks. 
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